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Nonlinear time-series forecasting, or empirical dynamic modelling, has been

used extensively in the past two decades as a tool for distinguishing between

random temporal behaviour and nonlinear deterministic dynamics. Previous

authors have extended nonlinear time-series forecasting to continuous spatial

data. Here, we adjust spatial forecasting to handle discrete data and apply the

technique to explore the ubiquity of nonlinear determinism in irregular spatial

configurations of coral and algal taxa from Palmyra Atoll, a relatively pristine

reef in the central Pacific Ocean. We find that the spatial distributions of coral

and algal taxa show signs of nonlinear determinism in some locations and

that these signals can change through time. We introduce the hypothesis

that nonlinear spatial determinism may be a signal of systems in intermediate

developmental (i.e. successional) stages, with spatial randomness characteriz-

ing early (i.e. recruitment dominated) and late-successional (i.e. ‘climax’ or

attractor) phases. Common state-based metrics that sum community response

to environmental forcing lack resolution to detect dynamics of (potential)

recovery phases; incorporating signal of spatial patterning among sessile

taxa holds unique promise to elucidate dynamical characters of complex

ecological systems, thereby enhancing study and response efforts.
1. Introduction
When scientists take data from a natural system, they do so with the hope that

the underlying dynamics, the determinism, will be discovered. If a system is

dominated by noise, even a mistake-free scientist will not discover the determi-

nistic signal, as the system’s underlying behaviour is masked by a connection of

the measured variables to a large number of other degrees of freedom whose

dynamics are not known.

Until recently, in experiments where noise is not a problem either through fil-

tering or carefully controlled experimentation, linear methods were the approach

of choice for discovering deterministic structure. The limitation of linear methods

is the relatively small set of possible system behaviours they are able to elucidate.

Linear dynamics can only lead to exponential growth, exponential decay or

periodic oscillations, that themselves could also grow or decay; any irregular

behaviours in time are attributed to random inputs. Nonlinear time-series analy-

sis is a data-intensive approach that can reveal evidence of a wide range of

nonlinear dynamics in the search for deterministic structure [1]. In practice, for

many ecological investigations that use nonlinear time-series methods, the goal

has been to characterize the extent to which a system is dominated by nonlinear

dynamics versus outside forcing from random influences [2,3]. In these efforts,

care is taken to ensure the analysis focuses on regions of the data that step

beyond auto-correlated behaviour that could result from linear decays of external

perturbations. More recent work has used the forecasting capability that results
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from assuming nonlinear dynamics as a mechanism to predict

the future evolution of the system [4].

Similar analyses and interpretations used for nonlinear time-

series analysis can be applied to spatial data. Linear methods

assume the same simple types of spatial configurations—spatial

growth, decay, oscillation. Analogous to interpretations based

upon linear models of temporal systems, any spatial configur-

ations that deviate from simple patterns in linear spatial

systems must be assumed to result from spatial stochasticity.

Nonlinear methods from time-series analysis have been applied

to spatial data [5], with a concomitant increase in the types of

spatial configurations that are interpretable. However, as with

time-series analysis, one must again be careful that the analysis

focuses on regions of the spatial data beyond autocorrelations.

That said, proper application of nonlinear time-series analysis

to spatial data provides the capability of determining whether

irregular spatial configurations are nonlinear or random.

If the nonlinear analysis is applied to spatial data at

varying points in time, the results hold promise for reveal-

ing how the role of nonlinear determinism in the spatial

configuration might be evolving. For example, a spatial

configuration might change from being nonlinear determi-

nistic to being random, or vice versa, at two moments in

time. In such a case, aggregated measures of the spatial con-

figuration such as spatial averages would not reveal the

dynamics if the aggregated values have not changed. As a

natural system example, much of the focus in coral reef

data collection and analysis efforts has been on changes in

the percentage of benthic cover of total coral or algal species

[6–8]. Point pattern analysis provides a means for distinguish-

ing random versus clustered or regularly distributed patterns;

however, this technique is not suitable for categorical data that

fill a large domain. Further, point pattern analyses for the

entire benthos will not reveal dynamical differences in cases

where changes in species borders occur without changes in

species centre of mass. Here, we apply nonlinear spatial fore-

casting to spatially explicit, landscape level (hundreds of

square metres) data of coral reef taxa [9] to explore (i) whether

evidence of nonlinear spatial determinism is perceptible, and

if so, (ii) whether changes in the nonlinear spatial determinism

of benthic reef species in the same location are observable

through time (year timescale).
2. Material and methods
Nonlinear time-series forecasting [1], or empirical dynamic mod-

elling [4], is based on Taken’s Theorem [10], which says that a

time series of a single measurable variable can be embedded as

a trajectory in an m-dimensional space by constructing vectors

in the space as

z ¼ (xn, xn�t, xn�2t, . . . , xn�(m�1)t): ð2:1Þ

Here, t is a temporal lag whose value is sometimes set to the first

minimum found in the mutual information between lagged

values of the time series [11]. There are systematic ways to

choose the dimension, m, of the embedding, such as the false

near neighbours test [11], but most often the analysis is done

over a range of dimensions and then reported for the dimension

that provides the most insight. The essence of Taken’s Theorem is

that a complete picture of the dynamical evolution of the system

can be captured with this embedding. Said another way, there is

a one-to-one mapping between the phase space attractor of the

full system and the reconstructed attractor in the embedded

space for the system.
As an analysis technique, the embedding allows one to probe

the extent to which a system is nonlinear deterministic, as opposed

to being dominated by random noise. Specifically, this is done by

splitting the time series into two regimes, a training and a testing

set. The training set is used to reconstruct the dynamical evolution

of the system in the embedded space. This is achieved using

equation (2.1) and creating a series of vector positions in an

embedded space that when linked together, reveal trajectories in

that space. Next, a point from the testing set is embedded in the

same space, and one then probes whether the training set trajec-

tories that are near to the testing point are good forecasters of the

future evolution of the testing point. If one finds that the trajec-

tories nearby to the testing point serve as better forecasts than

using an average of a large number of trajectories well-separated

in space, then the system in question has the hallmarks of nonlinear

determinism. In such a case, the dynamical evolution of the system

is predicated on a set of initial conditions, and once known, the be-

haviour of the system follows a set of unique rules captured in the

flow of the phase space behaviour.

Exploring determinism in spatial configurations can be done

in the same manner [5]. Given an image, a region of the image

can be used as the training region, where the locations in the

region x, y are embedded into an (2mx þ 1) by (2my þ 1) dimen-

sional space with the vector

Z
j
i ¼ (s j�myt

i�mxt
, . . . , s jþmyt

i�mxt
, . . . , s j�myt

iþmxt
, . . . , s jþmyt

iþmxt
): ð2:2Þ

Once all points in the training region are embedded, a location

in the testing region of the image can be chosen to explore non-

linear spatial determinism. This is done by probing how

accuracy in spatial forecasts a fixed direction away from the

test location depends on the training set’s near neighbours

used to generate the forecast, where again nearness of neigh-

bours is based on how similar the training vectors are to the

test vector. Specifically, if the spatial forecasts degrade as one

uses points farther and farther away in the embedded space

(less similar vectors), then the spatial configuration is non-

linear deterministic. That is to say, the spatial configuration

is an important determinant in how the larger surrounding

region is occupied.

Previous work exploring nonlinear spatial determinism with

the phase space embedding technique exclusively focused on

continuous data [5]. In spatial data collection efforts such as

land-use or species distributions, the data are often categorical.

The workflow for analysing nonlinear determinism in these

cases is essentially the same [12], but care must be taken to

make predictions outside regions of a similar discrete value.
3. Results
As an illustration of nonlinear forecasting in space for categ-

orical data, we have first constructed two simple spatial

images with discrete values at each pixel. The first image is

of circles of two different sizes placed randomly over a two-

dimensional grid (figure 1a). The second is a series of four

concentric circles scattered across the domain (figure 1b).

For both of the images, we have introduced random noise

by placing an additional class in individual pixel locations

at random locations throughout the image. For context,

these two images can be thought of as a domain with a back-

drop of high spatial frequency randomness, where in one

case, two different sized circle regions of given types are ran-

domly distributed in space, while in the other, the regions of

given type are always surrounded in space by a second type,

and those are always surrounded by a third type, and those

surrounded by a fourth type. The former is clearly random
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Figure 1. Nonlinear spatial forecasting results from analysis of surrogate spatial data (256 � 256 pixels). (a) A random configuration of discrete spatial classes. (b) A
deterministic arrangement of classes. For both (a) and (b), the background is class zero. For the random image, classes one and two are larger circles arranged randomly
in space and class three are single pixels randomly placed in space. For the deterministic image, class one surrounds class two, which surrounds class three, which
surrounds class four, which surrounds class five and again class six is single pixels randomly placed in space. Graphs (c,d) show the forecasting skill for the images
in (a,b), respectively, relative to a mode forecast, R, measured against the number of near neighbours used to make the forecast for forecast distances 0.75 to the
minimum in mutual information distances (black) and 1.0 to the minimum in mutual information distances (red) away in space. (Online version in colour.)
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while the latter is deterministic in the rules that dictate

surrounding neighbours.

For each image, a subset (we chose 70%) of the domain is

taken as the training portion for nonlinear spatial forecasting,

with the rest used as the testing portion. Vectors are constructed

in an embedded space according to equation (2.2) where we

have chosen the lag as one pixel and the embedding dimension

using the first minimum in the mutual information, which for

our spatially discrete data set we found according to

I(D) ¼
X

sn,snþD

P(sn, snþD)log
P(sn, snþD)

P(sn)P(snþD)

� �
: ð3:1Þ

Here sn refers to a given pixel and snþD refers to a pixel some

lagged distance away in either a row or column of the data. We

performed the calculation of equation (3.1) using only rows

and using only columns, and we did so for a randomly

chosen 20% of the rows and columns in the spatial data.

The embedding dimension we used to construct equation

(2.2) was the mean across the 20% of rows and columns we

analysed of the minimum in the mutual information curves

from equation (3.1). For the images shown in figure 1, this cor-

responds to five and seven pixels for the random and

deterministic patterns, respectively. We will refer to an

embedded point as a placket, since the construction of a

vector according to equation (2.2) with a lag of one pixel,
makes a small square placket within the image. In this case,

the plackets are boxes that are 5 � 5 pixels and 7 � 7 pixels,

respectively, with each centred on the pixel in question. The

training set is populated by repeated calculation of vector

values for all plackets within the training region. Next, a

location in the testing region is chosen at random and a placket

is constructed in the same manner, and the entire test region of

plackets is searched for the nearest matching placket. In the

case of our discrete data, the distance in the embedded space

between a test placket and training placket is simply the sum

of the number of pixels that do not match in the placket, and

thus the nearest neighbour is the one with the smallest

number of different pixels when comparing embedded vectors

(equation (2.2)).

A forecast of a test placket’s surrounding region is made

using near neighbours to the placket in question, where a

neighbour is defined with respect to the embedded space.

Consider a forecast made 10 pixels away from a test placket

using only the closest near neighbour for generating the fore-

cast. In this case, the forecast 10 pixels away from the test

placket would be the pixel value that is 10 pixels away

from the placket in the training region that most closely

matches the placket from the test region. Forecasts 10 pixels

away using say, the three closest near neighbours, are gener-

ated by finding the three plackets that are the most similar to

the test placket. The forecast 10 pixels away from the test
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Figure 2. Aerial view of Palmyra Atoll in the northern Line Islands showing the four regions, FR3, FR5, FR7 and FR9 where photomosaic images of the reef benthos
were acquired for analysis. (Online version in colour.)
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placket in this case is made by taking the mode of the three

pixels that are 10 pixels away from three nearest neighbour

plackets. In the work reported here, the predictions are

made in the upwards direction away from the pixel in the

centre of the placket but we also flip the image in all four

directions in our analysis so our predictions are isotropic. Pre-

vious work analysing continuous spatial data used a range of

different ways to combine the evolutions of neighbours in the

embedded space to make a forecast from a test point. Early

efforts used forecasts based on simple averages of neighbour

trajectories. Following that, weighted averages of neighbours

were more commonly chosen, with the weights assigned based

on distance to the neighbour in the embedded space. More

recent analyses have incorporated simplex projections of

points surrounding the test point [2]. In our case, with discrete

data, taking the mode of the neighbour forecasts seems fitting

in capturing the basic concept of averaging the trajectories.

Figure 1c,d shows the forecast skill as a function of the

number of neighbours used to make forecasts, where the neigh-

bours are chosen in order of how similar their embedded

vectors are to the test vector. The forecast skill, R, is measured

as the ratio of the number of correctly forecast pixels to the

number of pixels forecast correctly if the forecast was the

mode of the data. Forecast skill shown at a given value of

neighbours comes from forecasting half of the test points

from the testing portion of the domain (about 16 000 points

in this case). With this simple ratio, values of R larger than

1.0 show that the forecast is providing an improvement relative

to predicting the mode. To systematically make sure that fore-

casts are always made into regions with new information

relative to the centre pixel of a given placket, we only show

forecast skill for forecasts far enough away in space that the

distance is near the minimum in the mutual information

(which is a distance of five and seven pixels for the random

and deterministic images). When making forecasts out to

75% and 100% of the distance that represents the minimum

in mutual information for the data, the hallmarks of determin-

ism are clearly visible. For the case of random circles, there is no

benefit to using only near neighbours in the embedding space

(figure 1c), which is to say a given placket configuration offers

no utility in knowing what surrounds the region in space. Con-

versely, with circles of a given type always surrounded by

circles of the same type (albeit, even with noise scattered
about), the best forecasts of the surrounding region come

from considering other regions in the domain that are most

similar (figure 1d ). In other words, the spatial configuration,

as is definitional from the manner in which we made the

data, is deterministic.

To explore nonlinear spatial determinism in a natural

system, we consider spatial data from large-scale photographic

images that have been collected from Palmyra Atoll (figure 2), a

US Fish and Wildlife National Wildlife Refuge located approxi-

mately 1600 km south of Oahu, HI. The coral reef in Palmyra

has remained essentially free of human disturbance for the

past 50 years [13]. The field effort to collect the 100 m2 photo-

mosaics has been described previously [9]. Briefly, a diver

equipped with two mounted cameras swims about 1.5 m

above the reef in a gridded pattern, with the cameras taking

pictures every second. The resulting series of images are

stitched together with an image processing algorithm to form

one large, orthorectified image of the reef. Photomosaics are

then post-processed for identification of individual species

within the image. This is done using the operational definition

of a colony as a contiguous patch of live tissue and having a

human operator designate every coral or algal patch within

an image to the finest taxonomic level possible (principally

to the level of genus or species, based upon morphometric

distinctiveness). For this study, the photomosaics are categor-

ized at the species level according to table 1 with the

particular species list shown taken from previous work on

the photomosaics [9].

Nonlinear spatial forecasting suggests that the spatial con-

figurations of coral and algal taxa from location FR7 at Palmyra

in 2012 show signs of nonlinear determinism. Figure 3 shows

the forecast skill, R, as a function of neighbours used to make

the forecast for raw orthorectified images where each species

has been given a unique identification number (figure 3a) com-

pared to the case where the identification numbers have been

assigned randomly to every contiguous species region

(figure 3b). The latter represents surrogate data that serve as

a baseline test, whereby the spatial configuration is made to

be random. In this analysis, the placket size was set to 20 �
20 pixels, as a lag of 20 pixels was near the minimum in the

mutual information (equation (3.1)). Furthermore, the placket

comparisons are based on the similarity of pixel class, in this

case, species ID (table 1) within the placket. For the surrogate
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Figure 3. Nonlinear spatial forecasting results from analysis of the coral benthos at FR7 and for an image with the species randomly arranged for the site FR7. (a) The
coral benthos at FR7 with species assigned by number. (b) The same spatial arrangement as (a) but with species randomly numbered. Graphs (c,d) show the forecasting
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one standard deviation from the mean when doing the analysis using varying regions for testing and training. (Online version in colour.)

Table 1. Species ID and name for the classified photomosaic shown in figure 3.

ID species ID species ID species

1 Acropora (branching) 17 Halimeda 33 Porites (massive)

2 Acropora (corymbose) 18 Hydnophora exesa 34 no species

3 Acropora ( plating) 19 Hydnophora microconos 35 Porites superfusa

4 Astreopora myriophthalma 20 Leptastrea 36 Psammocora

5 no species 21 Leptoseris 37 Sarcophyton

6 Clavularia 22 Lobophyllia 38 soft coral

7 corallimorph 23 no species 39 Stylophora pistillata

8 Dictyosphaeria 24 Montastrea curta 40 Turbinaria reniformis

9 no species 25 Montipora (encrusting) 41 unknown

10 Favia matthai 26 Montipora ( plating) 42 unknown (encrusting)

11 Favia stelligera 27 other 43 unknown (massive)

12 Favites (encrusting) 28 Pavona (submassive) 44 unknown (submassive)

13 Favites (submassive) 29 Pavona varians 45 zooanthid

14 Fungia (multiple polyp) 30 Platygyra 0 unidentified

15 Fungia 31 Pocillopora

16 no species 32 Pocillopora eydouxi
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data, the analysis shows that forecast skill is not enhanced

by forecasts generated from regions similar to a region in

question (figure 3d ). In fact, at best the forecast skill approaches

a forecast of the mode of the data. For the authentic mosaic,

forecast improvement over the mode is found by using only

those plackets close in the embedded phase space (figure 3c).
For each of the images, the analysis has been done by

choosing different subsets of the domain as the training and

testing plackets. Therefore, we are operating under the assump-

tion of spatial isotropy and the error bars reflect the standard

deviation over the various different trials of training and

testing choice.
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When the nonlinear spatial analysis is applied to orthorec-

tified images of four of the same sites in both 2012 and a year

later in 2013, the signal of nonlinear determinism, that forecast

skill is improved using plackets most similar to a region,

remains for one site (FR7) but is absent for the remaining

three sites (figures 4 and 5). For FR7 in 2013, the overall fore-

casting capability has improved over the shown range of near

neighbours but importantly the best forecasts still occur at

lower numbers of neighbours (and this peak was enhanced

when probing further into near neighbours). The reason for

the overall improvement is that a mode forecast, which is the

baseline for comparison in our scoring metric, performs

worse in 2013 at FR7. At both FR3 and FR9, the spatial con-

figurations of benthic taxa appear random in both 2012 and

2013. FR5 shows some improvement in spatial forecasts

using only similar near neighbours and hence indicates non-

linear deterministic spatial structure in 2012, but signs of

determinism are lacking in the 2013 mosaic as forecasting

improvement over the mode prediction is not found.
4. Discussion and Conclusion
When assessing change on reefs, framework-building corals

are commonly grouped together to provide a single metric of

per cent coral cover. While useful for providing broad compari-

sons across locations or through time [14,15], as an aggregate

measure, per cent cover overlooks important changes in coral

community structure. Consider two extreme cases of a reef
showing no change in per cent cover of coral between two

time points. In one case, the evidence of no change may reflect

stasis in the coral assemblage structure—no change in the

abundance, diversity or size structure of the constituent

corals. In the second case, there may be complete mortality of

all corals of one species with associated recruitment and

growth of a different species. Both cases result in comparable

per cent coral cover but the dynamical structure of these two

reefs is quite distinct, one reflecting stability and the latter

reflecting demographic dynamism. The major reef-building

corals are colonial and clonal, and thus feature population

dynamics that are more complex than the classic life/death

processes of solitary organisms [16]. In particular, corals can

respond to stress events with the capacity for shrinking and

propagation via fragmentation and avoid entire organism mor-

tality with this partial mortality [17,18]. Furthermore, the

extensive regenerative capabilities of corals can enable rapid

reoccupation of space following disturbance events or cessa-

tion of stressful conditions [19–21]. As a result, coral growth

strategies can reinforce stability by providing the deterministic

dynamics for rapid recovery from disturbances.

The coral communities at Palmyra show evidence of

dynamical evolution when their spatial configuration changes

from showing signs of nonlinear deterministic structure to

being randomly arranged; this appears to be the case for the

community surveyed at FR5. A possible interpretation of this

evolution is variation in the disturbance regimes of the study

sites prior to 2012. This interpretation relies on the dynamical

characteristic of strong nonlinear determinism when a system
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is following a phase space trajectory that is moving toward

an attractor, having been recently perturbed from its attractor

state [22]. When considering the behaviour of a model coral

reef system across two-dimensional patterns of clustering,

Brito-Millán and colleagues [22] found a characteristic signal

of nonlinear determinism only during the so-called transient

phase, namely the period of system organization before

reaching the final dynamical attractor. Large or frequent dis-

turbance events would take the system from its attractor, and

as the system is then moving back into the attractor configur-

ation over a longer time period, strong nonlinear system

dynamics would guide the system back to its stable attractor

state. In such a scenario, nonlinear determinism would be

more evident following the disturbance than when back in

the attractor. For sites that remain in a random benthic con-

figuration, FR3 and FR9, the same interpretation would

suggest that these sites were not disturbed from their attractors

during the study period. At FR7, which maintained signs of

nonlinear determinism in 2012 and 2013, the disturbance

interpretation would suggest that this site is in a constant

state of reaction to large events.

The environmental context for these sites loosely agrees

with these interpretations [23–25]. Large energy SW wave

events occur infrequently at FR5. For location FR7, large

winter NW wave events occur often and directly impact the

study site. The regions of little evidence for disturbance, FR3

and FR9, are situated in regions of the island that receive some-

what less direct wave energy. Importantly, these sites have

dramatically higher abundances of several key taxa (Fungia
sp., Montipora sp. and Porites superfusa) which have been

shown to be locally clustered. Additionally, the spatial patterns
of these groups largely fit models of biotic clustering which we

hypothesize to be driven by partial mortality and fragmenta-

tion [9,26], both which require external perturbation (e.g.

storms, bleaching, predator/disease outbreak) to occur. As

these processes also result in higher numbers of individuals,

the large population sizes of these groups at FR3 and FR9

might reflect success in these groups following historical dis-

turbance. Furthermore, the total abundance and per cent

cover of all taxa combined are nearly twice as high at FR3

and FR9. Combined with the dominance of fast-growing taxa

at these sites, the resulting pre-emption of space might prevent

the communities at these sites from moving sufficiently far

from the attractor for nonlinear dynamics to emerge.

We propose a working model for nonlinear spatial forecast-

ing as a tool for probing ecological system dynamics [27]. At

early stages of succession, or immediately following a disturb-

ance event that has reset the spatial configuration, the spatial

configuration will be random. Once system dynamics begin

to take hold in successional spatial interactions, the spatial

configuration shows signs of nonlinear deterministic structure.

Eventually, once the system has reached late stages of succes-

sion, the strong spatial interactions have dissipated and the

spatial configuration again shows signs of randomness. This

working model for interpreting spatial nonlinear forecasting

at various times agrees with recent modelling work that

explored benthic dynamics in coral reefs [22] and it parallels

the idea that increasing signs of nonlinearity are harbingers

of a system moving between dynamical attractors [28]. As

such, spatial forecasting holds promise as a tool for exploring

ecological succession and with the recent advances in observ-

ing underwater ecological communities, scientists can use the
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tool to probe a wide array of systems in their response to

natural and anthropogenic disturbance.

Data accessibility. Python code for the spatial forecasting is available at
https://github.com/NickC1/skedm. Photomosaics are available
within electronic supplementary material in previous work [9].
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